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1. Background 

Snort is a widely deployed and powerful network signature-based intrusion detection technology 

(1).  It boasts both a massive rule database generated and maintained by the Sourcefire 

Vulnerability Research Team (more than 26,000 alert definitions as of the 3 Sep 2013 snapshot 

[2]) and flexible fuzzy matching capabilities based upon Perl-compatible regular expressions.  

The tradeoff for this robust functionality is that Snort has significant memory demands at 

runtime.  When benchmarked on a conventional computing platform (Dell Inspiron 15N laptop 

running Mint Maya as the operating system, dual-core Core i5 CPU, 8 GB RAM), Snort 

exhibited a peak RAM usage of approximately 1.2 GB as measured by the Massif memory 

profiler within the Valgrind suite (3).  While this is very reasonable for commodity computing 

hardware (dedicated to running Snort) that might be found in a network operations center, it 

becomes a prohibitive requirement for devices that would be more commonly found in a 

dynamic tactical environment.  As a point of reference, the Raspberry Pi single-chip computer 

(4) is equipped with only 512 MB of RAM and would, therefore, be overwhelmed by the runtime 

demands of Snort.  Consequently, any packet analysis solution in the tactical requirement must 

make do with significantly fewer resources than what is needed by Snort. 

In addition to the resource requirement, there are other significant disparities between the 

environments and use cases in which Snort is typically deployed, and a mobile tactical network.  

Conventional computing environments that rely upon Snort as at least part of their intrusion 

detection solution are typically quite static in terms of topology and composition, likely with 

multiple gigabits per second of bandwidth available.  This known and static layout permits a 

small number of sensors (perhaps just one or two) equipped with Snort to reliably monitor the 

entire network, while the available bandwidth is able to support periodic updates to the signature 

databases used by each instance of Snort.  In contrast, the mobile tactical network will have a 

highly dynamic topology with substantially less available bandwidth.  In order to guarantee 

coverage of the entire network, the dynamic topology compels the presence of a sensor local to 

every single network node.  Since ad-hoc mobile networks are comprised of devices such as 

smartphones, tablets, single-chip computers, and embedded hardware platforms, these nodes are 

likely to be undersized in terms of processing capacity in comparison to their data center 

counterparts.  Updates to these sensors must be also extremely lightweight and support 

asynchronous delivery to accommodate the constrained and unpredictable connectivity in this 

environment.  Finally, the possibility that the risk of the adversary physically appropriating 

devices from the tactical network (likely to be small and portable) implies that they should 

contain as little sensitive information as possible.  If a standard Snort rule set file were captured 
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in such a circumstance, the adversary would be able to exactly enumerate the network signature 

and alerting capability of the tactical security system. 

This adds up to the need for a network packet analysis solution that can approximate the 

signature matching capabilities of Snort, drastically mitigate resource consumption and operating 

load, use extremely lightweight constructs for updates, and locally obfuscate the signature 

baseline.  We propose the Extremely Lightweight Intrusion Detection (ELIDe) solution to meet 

these needs. 

2. Related Work 

Previous profiling efforts [Spyros04] have identified string comparisons as the primary 

bottleneck for Snort throughput, reporting that such operations consume up to approximately 

70% of the total execution time and 80% of executed instructions on realistic network traffic.  

Several approaches have been proposed to mitigate this bottleneck, either through moving 

expensive or paralellizable computations to specialized hardware (20, 21, 23, 26), software 

mitigations (22) , or a combination of the two (19).  

The work of (23) proposes an n-byte “jumping window” pattern matching scheme to pre-process 

lookups using ternary content addressable memory (TCAM).  While this uses a similar insight to 

ELIDe—that n-grams of the packet form a useful proxy for sequential dependencies—they focus 

on multi-gigabit rates of deep packet inspection, and require specialized hardware (the TCAM 

itself).  Their use of a jumping window (rather than a sliding window such as in our application) 

does significantly reduce the computational cost, but with a corresponding decrease in accuracy 

due to “frame shift” errors.  They also focus on use of TCAM to do direct matching from raw 

payload to signatures, which does not mitigate the OpSec concerns that formed part of the design 

goal of this project.  The work of (19) also uses TCAM in order to generalize and accelerate 

certain transitions in finite state machine (FSM) operations in signature matching.  As with the 

work of (23), however, it focuses on direct translation of signatures of concern into FSM 

structures.  The pattern-matching flexibility of TCAM is also exploited in (26) who attempts to 

reduce the often significant power requirements of TCAM by use of a novel set-splitting 

algorithm; their splitting allows for paralellism in matching, as well as a reduction in update cost; 

it, however, still requires the use of additional hardware, and as they report, only partially 

mitigates the additional cost of TCAM over standard memory. 

In (20), graphics processing units (GPUs) are examined to paralellize string matching operations. 

As the signature matching process is, itself, embarassingly paralellizable, it results in a 

significant reduction of computational time for signature bases that can fit within GPU memory.  

However, as with TCAM-based approaches, this does require additional hardware, does not meet 
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the obfuscation design goal, and has the additional shortcoming that larger signature sets require 

additional hardware to be purchased for each device.  Similarly, in (21) (among many others), 

field-programmable gate array (FPGA) processors are used to implement high-speed matching of 

Snort rules.  They develop an FPGA implementation of the “BV-TCAM” architecture, 

combining a binary vectorization (BV) of the input data with TCAM emulation.  Notably, 

however, their (test) implementation is limited to 512 rules, with additional hardware required to 

support additional rules.   

Our research is differentiated from the aforementioned efforts in four significant ways.  First, we 

propose an algorithm that is implementable on a general-purpose computing platform, without 

requiring specialized hardware to be attached to an existing device.  Second, we explicitly 

consider the obfuscation of signatures as a design goal, and exploit the pre-image resistance of 

hashing functions to achieve this.  Third, all of the methods previously described that focus 

directly on emulating Snort signature matching require either storage or processing time that 

scales linearly with the size of the rule database, whereas our approach (given fully trained 

weight vectors) operates in constant time with respect to the size of the rule database.  Finally, 

we focus specifically on on-device intrusion detection for resource-constrained systems 

operating in mobile, ad-hoc networks, rather than on standard fixed networks with higher 

throughputs and the ability to dedicate a computer to the exclusive task of acting as a NIDS 

sensor. 

Kachirski and Guha have previously proposed an ad-hoc network intrusion detection structure in 

which agents residing within the network nodes perform the functional tasks of monitoring the 

state and traffic of the network, making decisions based upon the output of the monitoring, and 

acting upon the decisions (5).  Cognizant of the same resource and bandwidth environmental 

limitations already discussed, their proposed structure uses a peer-election strategy to distribute 

network monitoring duties amongst the participants in the network with the goal of conserving 

the network’s overall computational demand.  Building upon both the agent framework 

characterized previously, as well as a case-based reasoning approach to network intrusion 

analysis developed by Schwartz et al (6), Guha et al. (7) propose an alternative implementation 

of Snort rule sets as an archive of cases with associated case features to be used as a basis for 

reasoning by the network nodes that have been designated for monitoring duty.  Our contribution 

is differentiable from this work by proposing a scalable implementation of packet analysis that 

eschews the need for selective network monitoring node designation to maximize throughput and 

fault tolerance in the event one or more nodes in the ad-hoc network cease their participation. 

Antrosiom and Fulp have previously proposed a strategy of continuously monitoring and 

scanning both conventionally wired and wireless ad-hoc networks for vulnerabilities (8).  By 

periodically updating the vulnerability assessment of the network as a whole, nodes that have 

recently become vulnerable or been compromised can be quarantined via logical network 
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segmentation, mitigating their residual impact upon the other participants in the network.  The 

policy management and network configuration decisions in the proof-of-concept of this proposed 

solution are made by a centralized network node that hosts the defense system.  Once again, our 

contribution is differentiable because of its emphasis upon decentralizing the network defense 

functionality by distributing a lightweight approximation of the packet analysis functionality 

normally provided by Snort to every node in the network. 

Iland et al (9) have proposed techniques for detecting the presence of malware in ad-hoc mobile 

infrastructure with specific emphasis on the Android operating system (10).  The proof-of-

concept implementation of this work relies upon simulating both an ad-hoc network containing 

compromised Android hosts, as well as multiple “bot-herder” hosts participating in command-

and-control traffic with the compromised hosts with a collection of virtual machines.  Wireshark 

(11) is then deployed for packet and protocol analysis of the captured virtual network traffic after 

the conclusion of the simulation, and malware is detected by identifying distinguishable 

characteristics of both the Hypertext Transfer Protocol (12) and Domain Name Service protocol 

(13).  Our contributions are differentiable because of the motivation for a more generalized 

defensive technology that is simultaneously able to identify any malicious traffic describable as a 

Snort rule regardless of the application protocol, as well as operate within a comparatively 

resource-depleted mobile network environment. 

3. ELIDe Approach 

ELIDe is proposed as a linear machine learning classifier that relies upon a conventional Snort 

implementation as its training oracle.  It employs the “hash trick” of (24, 25) in order to 

approximate a classifier in an extremely high-dimensional space with a lower-dimensional space, 

as will be described, thus gaining most of the benefits of classification in the high dimensional 

space without being forced to pay the price of performing computations in that space.  The 

approach begins with characterizing a network packet as a collection of N-grams (N bytes of 

contiguous data from the packet).  The feature vector that represents a particular packet is then 

constructed by counting the number of occurrences of each unique N-gram appearing in the data 

and indexing these counts with a collision-resistant hash digest (using the N-gram and an 

arbitrary salt as the input).  Classification is then performed by computing the dot product of the 

representative feature vector with an internal weight vector (of equal size) and using the sign of 

the result as the classifier’s decision.  Due to the previously identified resource demands of 

Snort, ideally supervised learning would take place in a more conventional computing 

environment and not in the tactical network.  The resulting weight vector can then be transmitted 

to ELIDe instances in the field as lightweight updates. 
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This approach has the benefit of projecting the network packet representation into a space with 

highly elevated dimensionality (256
N
 possible N-grams), where performing linear classification 

to separate “good” packet data from “suspicious” packet data is far more tractable.  However, 

operating natively in this high-dimensional space would also impose unacceptable memory and 

processing requirements within the draconian constraints of a device likely to be found in a 

tactical network (whose resources which will also likely be shared between the ELIDe solution 

and other applications). 

In practice, the N-gram features in this high-dimensional space will be extremely sparse, 

particularly given the bandwidth constraints of a tactical network.  The ELIDe approach, 

therefore, avoids storing the native N-grams and instead represents them as the lower-order bits 

of their respective hash digests.  This effectively re-lowers the dimensionality of the problem 

space down to the only size required to represent the hash digests (for example, 2
10

 dimensions 

for 10-bit hash outputs).  The length of the N-gram hash digest output becomes an 

implementation detail that represents the tradeoff between resource consumption (shorter hashes 

will be computed more quickly and take up less storage in memory) and accuracy (longer hashes 

provide more detail and lower the likelihood of two distinct N-grams colliding with the same 

hash output). 

Finally, the weight vector used in the final stage of classification will be updated through 

supervised learning of a training data set (a sequence of packet data).  Snort will be used as the 

oracle for this learning process:  if an alert triggered a Snort alert, the desired outcome of the 

ELIDe classifier will be positive.  Otherwise, the desired outcome will be negative.  This 

approach also acts as obfuscation of the “signature” data in the event the device hosting the 

ELIDe instance is captured.  While it is theoretically possible for the adversary to reverse-

engineer the operation of ELIDe and determine its response to individual packets, it will be very 

difficult to exactly enumerate the full range of packets for which ELIDe fires an “alert” with just 

the weight vector alone. 

4. Implementation and Results 

The implementation of an ELIDe solution prototype consisted of three stages.  The initial stage 

took the form of a prototype implemented in CPython version 2.7.3 (14) that used the NumPy 

(15) library for vector mathematics and the standard Python implementation of MD5 (16) as the 

N-gram feature hashing mechanism.  MD5 is not considered a cryptographically secure hashing 

algorithm, but it is suitable as a hashing mechanism for the ELIDe concept since it is collision-

resistant.  Snort version 2.9.4, accompanied by the February 2013 release of the Sourcefire 



 
 

 6 

Vulnerability Research Team (VRT) rule set, was used as ELIDe’s training oracle for all 

exercises. 

This implementation was able to functionally perform the required operations and achieved a 

true positive rate of 99.9% for hash digest lengths longer than 8 bits (see the previous discussion 

regarding the tradeoff of hash lengths).  In addition, its peak memory consumption was profiled 

by Massif as 196 MB, or 16.3% of Snort’s requirement of 1.2 GB.  However, its runtime latency 

did not compare favorably with Snort when analyzing controlled packet data and amounted to 

approximately 5–20 times longer than that of Snort, depending upon the length of the hashed N-

gram features (the mean runtime of Snort to analyze a packet capture dataset of 26 MB was 

approximately 30 s).  After analyzing the prototype with standard Python performance profiling 

tools, the bulk of the latency was represented by the process of computing MD5 hash digests.  

The decision was then made to replace MD5 with the Murmurhash (17), a hashing algorithm 

known to have better performance characteristics than MD5. 

In order to characterize the dependency of ELIDe’s runtime performance and accuracy upon the 

configurable parameters of hash length and N-gram size, the Python implementation was tested 

using a data set consisting of 345320 packets captured from a synthetic virtual network known to 

contain traffic that triggers alerts from the Snort VRT rule set.  The classifier was exercised 

using five different N-gram sizes (5 bytes, 10 bytes, 15 bytes, 20 bytes, and 25 bytes) as well as 

13 different hash lengths (the inclusive range of 4 bits through 16 bits), and five trials were 

executed for each distinct configuration producing a randomized sequence of 325 trials (5 N-

gram sizes x 13 hash lengths x 5 repetitions).  In all cases, the response elicited from Snort for 

each packet (alert vs. no alert) was used as the ground truth to supervise the learning of the 

classifier. 

Figures 1 and 2 visualize collected data representing the time required for the ELIDe classifier to 

process and classify the data set after supervised training has been completed as a function of the 

feature hash length and N-gram size, respectively.  The timing data suggests the following 

conclusions: 

• The use of Murmurhash instead of MD5 improved ELIDe’s runtime latency to 

approximately 2–3 times greater than that of Snort (previously the latency was 5 to 20 

times greater than that of Snort). 

• There is noticeable correlation between runtime performance and the length of the feature 

hashes. 

• There is NO noticeable correlation between runtime performance and the size of the N-

grams. 
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Figure 1. Time required by the Python ELIDe prototype to classify 26 MB of packet data as a function of feature 

hash length. 



 
 

 8 

 

Figure 2. Time required by the Python ELIDe prototype to classify 26 MB of packet data as a function of N-gram 

size. 

Figures 3 and 4 visualize collected data representing the true positive rate of the classifier as a 

function of the feature hash length and N-gram size, respectively.  The classification accuracy 

results suggest the following conclusions: 

• There is noticeable correlation between the true positive rate and the length of the feature 

hashes.  If the feature hash length is greater than or equal to 8 bits, the classifier achieves a 

true positive rate between 99% and 100%. 

• There is NO noticeable correlation between the true positive rate and the size of the N-

grams. 

Further performance profiling led to the conclusion that the majority of remaining latency was 

attributable to ELIDe’s materialization as a Python prototype.  This led to the second major 

phase of implementation that converted ELIDe to a C++ application.  Murmurhash has both C++ 

and Python interface bindings, and was, therefore, retained as the N-gram feature hashing 
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mechanism.  The responsibility for performing vector operations was handed to the BLAS 

library, which is itself the underlying engine beneath the Python Numpy library previously used 

for this purpose.  Profiling the memory usage of the C++ manifestation of ELIDe with Massif 

indicated that it required only 17 MB, or 1.42%, of Snort’s RAM requirement.  It was then 

subjected to the same set of trials (325 trials over five different N-gram sizes and 13 different 

hash lengths) previously executed by the Python implementation. 

 

Figure 3.  True positive classification rate of the Python ELIDe prototype as a function of feature hash length. 
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Figure 4.  True positive classification rate of the Python ELIDe prototype as a function of N-gram size. 

Figures 5 and 6 visualize collected data representing the time required by the C++ 

implementation to process and classify the same data set with which the Python prototype was 

evaluated.  The results suggest that eliminating the overhead introduced by the Python interpreter 

resulted in a throughput that was 30 times faster than Snort in the best case and almost identical 

to Snort’s throughput in the worst case.  
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Figure 5. Time required by the C++ ELIDe implementation to classify 26 MB of packet data as a function of feature 

hash length. 
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Figure 6. Time required by the C++ ELIDe implementation to classify 26 MB of packet data as a function of N-

gram size. 

Figures 7 and 8 visualize the data collected representing the true positive rate of the C++ 

implementation as a function of the feature hash length and N-gram size, respectively.  These 

results verify that converting ELIDe into a C++ application did not adversely affect the accuracy 

of its classification. 

The final stage of the implementation transitioned the ELIDe application onto a resource-

constrained hardware platform more likely to be used in a mobile tactical network, and the 

Raspberry Pi was chosen as that representative platform.  ELIDe was successfully tested on a 

Raspberry Pi, its throughput was benchmarked at approximately 8.3 megabits per second (using 

hashed N-gram features that were 10 bits in length) while retaining its functional characteristics 

and true positive rate. 
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Figure 7.  True positive classification rate of the C++ ELIDe implementation as a function of feature hash length. 
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Figure 8.  True positive classification rate of the C++ ELIDe implementation as a function of N-gram size. 

5. Conclusion 

ELIDe is the proof-of-concept for approximating the functionality of a robust network intrusion 

detection tool such as Snort for use in a mobile tactical network.  The spartan processing and 

memory requirements make it ideal for dense coverage of every single node in a dynamic 

topology, and the lightweight constructs used to update ELIDe’s signature baseline are 

obfuscated and suitable for transmission to devices for which physical loss is a possibility. 
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